Shape Representation and Description 287

characteristics measured in this co-ordinate system yield an invariant description. However, the pose must
be hypothesized for each object and each image, which makes this approach difficult and unreliable.

Application of invariant theory, where invariant descriptors can be computed directly from image data
without the need for a particular co-ordinate system, represents another approach. In addition, invariant
theory can determine the total number of functionally independent invariants for a given situation, therefore
showing completeness of the description invariant set. Invariant theory is based on a collection of transforms
that can be composed and inverted. In vision, the plane-projective group of transforms is considered which
contains all the perspectives as a subset. The group approach provides a mathematical tool for generating
invariants: if the transform does not satisfy the properties of a group, this machinery is not available [Mundy
and Zisserman, 1992]. Therefore, the change of co-ordinates due to the plane-projective transform is
generalized as a group action. Lie group theory is especially useful in designing new invariants.

Let corresponding entities in two different co-ordinate systems be distinguished by capital and lowercase
letters. An invariant of a linear transformation is defined as follows:

An invariant, / (P), of a geometric structure described by a parameter vector P, subject to a linear
transformation T of the co-ordinates x = TX,, is transformed according to I (p) =1 (P) ITI". Here (p) is
the function of the parameters after the linear transformation, and IT! is the determinant of the matrix T.

In this definition, w is referred to as the weight of the invariant. If w = 0, the invariants are called scalar
invariants, which are considered below. Invariant descriptors are unaffected by object pose, by perspective
projection, and by the intrinsic parameters of the camera.

Several examples of invariants are now given:

1. Cross ratio: The cross ratio represents a classic invariant of a projective line. As mentioned earlier,
a straight line is always projected as a straight line. Any four collinear points A, B, C, D may be
described by the cross-ratio invariant

_(A-C)(B-D)

“(A-D)(B-C)’
where (A — C) represents the distance between points A and C (see Figure 8.19). Note that the cross
ratio depends on the order in which the four collinear points are labeled.

(8.24)

) Figure 8.19: Cross ratio; four collinear points form a
\ b projective invariant.

2. Systems of lines or points: A system of four co-planar concurrent lines (meeting at the same point)
is dual to a system of four collinear points ard the cross ratio is its invariant; see Figure 8.19.
A system of five general co-planar lines forms two invariants

_ M| [Msy, | = |M421HM532|

I =) .
I |M4211 |M53l ’ IM432| IMSZI

’ (8.25)

where M, ;, = (1. 1, 1). L= (1}, 13, 1])" is a representation of a line /! x + 1%y + 3= 0, where i € [1, 5],
and IMI is the determinant of M.

288 Digital Image Processing and Computer Vision

(a) (b) (c)

Figure 8.20: Five co-planar points form two cross-ratio invariants. (a) Co-planar points. (b) Five points form a system
of four concurrent lines. (c) The same five points form another system of four co-planar lines.

If the three lines forming the matrix M;;, are concurrent, the matrix becomes singular and the
invariant is undefined.

A system of five co-planar points is dual to a system of five lines and the same two invariants are
formed. These two functional invariants can also be formed as two cross ratios of two co-planar
concurrent line quadruples; see Figure 8.20. Note that even though combinations other than those
given in Figure 8.20 may be formed, only the two presented functionally independent invariants
exist.

3. Plane conics: A plane conic may be represented by an equation

ax2+bxy+cy2+dx+ey+f=0 (8.26)

for x = (x, y, 1)”. Then the conic may also be defined by a matrix C

a bl2 dI2
C=|b/2 ¢ el2
dl2 el2 f
and
x Cx=0. (8.27)

For any conic represented by a matrix C, and any two co-planar lines not tangent to the conic, one
invariant may be defined

s (1ITC*‘12)2
o (ey)(ke)

The same invariant can be formed for a conic and two co-planar points.
Two invariants can be determined for a pair of conics represented by their respective matrices C,.
C, normalized so that IC}| = 1

Iy = trace[€' C, |, L=trace[C3' G,] . (8.29)

(The trace of a matrix is calculated as the sum of elements on the main diagonal.) For non-normalized
conics, the invariants of associated quadratic forms are

I, = trace [CTI Cg}(%}i I, = trace [C;‘ CIJG(C:—zD? (8.30)
1

and two true invariants of the conics are [Quan et al., 1992]

Shape Representation and Description 289

ol trace [C,‘l C2] |C, | L trace [C;l Cl] |—C_2| -
trace” [C;l Cl] IC|" 7 trace? [Cl" Cz] Gl |

An interpretation of these invariants is given in [Maybank, 1992]. Two plane conics uniquely
determine four points of intersection, and any point that is not an intersection point may be chosen to
form a five-point system together with the four intersection points. Therefore, two invariants exist for
the pair of conics, as for the five-point system.

Many man-made objects consist of a combination of straight lines and conics, and these invariants may be
used for their description. However, if the object has a contour which cannot be represented by an algebraic
curve, the situation is much more difficult. Differential invariants can be formed (e.g., curvature, torsion,
Gaussian curvature) which are not affected by projective transforms. These invariants are local—that is, the
invariants are found for each point on the curve, which may be quite general. Unfortunately, these invariants
are extremely large and complex polynomials, requiring up to seventh derivatives of the curve, which makes
them practically unusable due to image noise and acquisition errors. However, if additional information is
available, higher derivatives may be avoided. In [Mundy and Zisserman, 1992], higher derivatives are traded
for extra reference points which can be detected on curves in different projections, although the necessity of
matching reference points in different projections brings other difficulties.

Designing new invariants is an important part of invariant theory in its application to machine vision. The
easiest way is to combine primitive invariants, forming new ones from these combinations. Nevertheless, no
new information is obtained from these combinations. Further, complete tables of invariants for systems of
vectors under the action of the rotation group, the affine transform group, and the general linear transform
group may be found in [Weyl, 1946]. To obtain new sets of functional invariants, several methods (eliminating
transform parameters, the infinitesimal method, the symbolic method) can be found in [Forsyth etal., 1991;
Mundy and Zisserman, 1992].

Stability of invariants is another crucial property which affects their applicability. The robustness of
invariants to image noise and errors introduced by image sensors is of prime importance, although not much
is known about this. Results of plane-projective invariant stability testing (cross ratio, five co-planar points,
two co-planar conics) can be found in [Forsyth et al., 1991]. Further, different invariants have different
stabilities and distinguishing powers. It was found, for example [Rothwell et al., 1992], that measuring a
single conic and two lines in a scene is too computationally expensive to be worthwhile. It is recommended
to combine different invariants to enable fast object recognition.

An example of recognition of man-made objects using invariant description of four co-planar lines, a
conic and two lines, and a pair of co-planar conics is given in [Rothwell et al., 1992]. The recognition system
is based on a model library containing over 30 object models—significantly more than are reported for other
recognition systems. Moreover, the construction of the model library is extremely easy; no special
measurements are needed, the object is digitized in a standard way, and the projectively invariant description
is stored as a model. Further, there is no need for camera calibration. The recognition accuracy is 100% for
occluded objects viewed from different viewpoints if the objects are not severely disrupted by shadows and
specularities. An example of such object recognition is given in Figure 8.21.

8.3 REGION-BASED SHAPE REPRESENTATION AND DESCRIPTION

We can use boundary information to describe a region, and shape can be described from the region itself. A
large group of shape description techniques is represented by heuristic approaches which yield acceptable
results in description of simple shapes. Region area, rectangularity, elongatedness, direction, compactness,
etc., are examples of these methods. Unfortunately, they cannot be used for region reconstruction and do not
work for more complex shapes. Other procedures based on region decomposition into smaller and simpler

290 Digital Image Processing and Computer Vision

Figure 8.21: Object recognition based on shape invariants. (a) Original image of overlapping objects taken from an
arbitrary viewpoint. (b) Object recognition based on line and conic invariants. Courtesy of D. Forsyth, The University
of lowa; C. Rothwell, A. Zisserman, University of Oxford; J. Mundy, General Electric Corporate Research and
Development, Schenectady, NY.

sub-regions must be applied to describe more complicated regions, then sub-regions can be described
separately using heuristic approaches. Objects are represented by a planar graph with nodes representing
sub-regions resulting from region decomposition, and region shape is then described by the graph properties
[Rosenfeld, 1979; Bhanu and Faugeras, 1984; Turney et al., 1985]. There are two general approaches to
acquiring a graph of sub-regions: The first one is region thinning leading to the region skeleton, which can
be described by a graph. The second option starts with the region decomposition into sub-regions, which
are then represented by nodes, while arcs represent neighborhood relations of sub-regions. It is common to
stipulate that sub-regions be convex.
Graphical representation of regions has many advantages; the resulting graphs:

Are translation and rotation invariant; position and rotation can be included in the graph definition.
Are insensitive to small changes in shape.

Are highly invariant with respect to region magnitude.

Generate a representation which is understandable.

Can easily be used to obtain the information-bearing features of the graph.

Are suitable for syntactic recognition.

On the other hand, the shape representation can be difficult to obtain and the classifier-learning stage is not
easy either (see Chapter 9). Nevertheless, if we are to get closer to the reality of computer vision, and to
understand complex images, there is no alternative.

8.3.1 Simple scalar region descriptors

A number of simple heuristic shape descriptors exist which relate to statistical feature description. These
methods are basic and are used for description of sub-regions in complex regions, and may then be used to
define graph node classification [Bribiesca and Guzman, 1980)].

Area

The simplest and most natural property of a region is its area, given by the number of pixels of which the
region consists. The real area of each pixel may be taken into consideration to get the real size of a region,
noting that in many cases, especially in satellite imagery, pixels in different positions correspond to different
areas in the real world. If an image is represented as a rectangular raster, simple counting of region pixels
will provide its area. If the image is represented by a quadtree, however, it may be more difficult to find the
region area. Assuming that regions have been identified by labeling, the following algorithm may be used.

Shape Representation and Description 291

Algorithm 8.4: Calculating area in quadtrees
1. Set all region area variables to zero, and determine the global quadtree depth H; for example, the
global quadtree depth is H = 8 for a 256 x 256 image.

2. Search the tree in a systematic way. If a leaf node at a depth 4 has a non-zero label, proceed to step 3.
3. Compute:

arealregion_label] = arealregion_label] + 4H-h

4. The region areas are stored in variables area[region_label].

The region can be represented by n polygon vertices (iy, j;), and (i, j,) = (i,, j,). The area is given by

n-1

z (it Jicsr = i1 i)

k=0

1
area = —
2

4

(8.32)

—the sign of the sum represents the polygon orientation. If a smoothed boundary is used to overcome noise
sensitivity problems, the region area value resulting from equation (8.32) is usually somewhat reduced.
Various smoothing methods and accurate area-recovering techniques are given in [Koenderink and v
Doorn, 1986].

If the region is represented by the (anti-clockwise) Freeman chain code, the following algorithm provides
the area.

Algorithm 8.5: Region area calculation from Freeman 4-connectivity chain code representation
1. Set the region area to zero. Assign the value of the starting point i co-ordinate to the variable
vertical_position.
2. For each element of the chain code (values 0, 1, 2, 3) do
switch(code) ({
case O:
area := area - vertical position;
break;
case 1:
vertical position := vertical position + 1;
break;
case 2:
area := area + vertical position;
break;
case 3:
vertical position := vertical position - 1;
break;
}

3. If all boundary chain elements have been processed, the region area is stored in the variable area.

Euler’'s number

Euler’s number 9 (sometimes called genus or the Euler-Poincaré characteristic) describes a simple,
topologically invariant property of the object. It is based on S, the number of contiguous parts of an object,
and N, the number of holes in the object (an object can consist of more than one region, otherwise the
number of contiguous parts is equal to one; see Section 2.3.1). Then

9=8-N. (8.33)

292 Digital Image Processing and Computer Vision

Special procedures to compute Euler’s number can be found in [Dyer, 1980; Rosenfeld and Kak, 1982; Pratt,
1991], and in Chapter 13.

Projections
Horizontal and vertical region projections p,, (i) and p, (j) are defined as
p®=21 (i), pli)=21 (ind). 8.34)
j i

Width

Vertical projection

Horizontal projection

f Height Figure 8.22: Projections.

Region description by projections is usually connected to binary image processing. Projections can serve as
a basis for definition of related region descriptors; for example, the width (height) of a region with no holes
is defined as the maximum value of the horizontal (vertical) projection of a binary image of the region. These
definitions are illustrated in Figure 8.22. Note that projections can be defined in any direction.

Eccentricity

The simplest eccentricity characteristic is the ratio of the length of the maximum chord A to the maximum
chord B which is perpendicular to A (the ratio of major and minor axes of an object)—see Section 8.2.2,
Figure 8.23. Another approximate eccentricity measure is based on a ratio of main region axes of inertia
[Ballard and Brown, 1982; Jain, 1989].

e

Figure 8.23: Eccentricity.

Elongatedness

Elongatedness is a ratio between the length and width of the region bounding rectangle. This is the rectangle
of minimum area that bounds the shape, which is located by turning in discrete steps until a minimum is
located (see Figure 8.24a). This criterion cannot succeed in curved regions (see Figure 8.24b), for which the
evaluation of elongatedness must be based on maximum region thickness. Elongatedness can be evaluated as
aratio of the region area and the square of its thickness. The maximum region thickness (holes must be filled
if present) can be determined as the number of erosion steps (see Chapter 13) that may be applied before the
region totally disappears. If the number of erosion steps is d, elongatedness is then

area

elongatedness =

Shape Representation and Description 293

(@) (b)

Figure 8.24: Elongatedness: (a) bounding rectangle gives acceptable results; (b) bounding rectangle cannot represent
elongatedness.

Another method based on longest central line detection is described in [Nagao and Matsuyama, 1980];
representation and recognition of elongated regions is also discussed in [Lipari and Harlow, 1988].

Note that the bounding rectangle can be computed efficiently from boundary points, if its direction ¢ is
known. Defining

a(x,y)=xcos @+ysin 8, a(x,y)=-xsin 8+ ycos 6, (8.36)

search for the minimum and maximum of & and S over all boundary points (x, y). The values of @, &
Buin» Brmax then define the bounding rectangle, and [, = (a,,,, — @
width.

max’

min) and [, = (& . — @ i) are its length and

Rectangularity

Let F, be the ratio of region area and the area of a bounding rectangle, the rectangle having the direction k.
The rectangle direction is turned in discrete steps as before, and rectangularity measured as a maximum of
this ratio F:

rectangularity = mflx F,. (8.37)

The direction need only be turned through one quadrant. Rectangularity assumes values from the interval (0, 1],
with 1 representing a perfectly rectangular region. Sometimes, it may be more natural to draw a bounding
triangle; a method for similarity evaluation between two triangles called sphericity is presented in [Ansari
and Delp, 1990].

Direction

Direction is a property which makes sense in elongated regions only. If the region is elongated, direction is
the direction of the longer side of a minimum bounding rectangle. If the shape moments are known (Section
8.3.2), the direction @ can be computed as

1 24,
0= ——arctan[——“——] . 838
2 Hao — Hop o

It should be noted that elongatedness and rectangularity are independent of linear transformations—
translation, rotation, and scaling. Direction is independent on all linear transformations which do not include
rotation. Mutual direction of two rotating objects is rotation invariant.

Compactness

Compactness is a popular shape description characteristic independent of linear transformations given by

(re gion_border_length)2

compactness = (8.39)

areda

294 Digital Image Processing and Computer Vision

(a) (b)
Figure 8.25: Compactness: (a) compact; (b) non-compact.

The most compact region in a Euclidean space is a circle. Compactness assumes values in the interval [1, o)
in digital images if the boundary is defined as an inner boundary (see Section 6.2.3); using the outer boundary,
compactness assumes values in the interval [16, 8). Independence from linear transformations is gained only
if an outer boundary representation is used. Examples of a compact and a non-compact region are shown in
Figure 8.25.

8.3.2 Moments

Region moment representations interpret a normalized gray-level image function as a probability density of
a 2D random variable. Properties of this random variable can be described using statistical characteristics—
moments [Papoulis, 1991]. Assuming that non-zero pixel values represent regions, moments can be used for
binary or gray-level region description. A moment of order (p + g) is dependent on scaling, translation,
rotation, and even on gray-level transformations and is given by

Moy = I: jixpyq f(x, y)dxdy. (8.40)

In digitized images we evaluate sums
myy= 2, 2 1"/ fG), (8.41)
i=—00 j=—00

where x, y, i, j are the region point co-ordinates (pixel co-ordinates in digitized images). Translation
invariance can be achieved if we use the central moments

tog= [|7 = x) (y= 307 £ (xy) dady, (8.42)
or in digitized images
Hpg= 2. 2 (=x)"G=y)? f, j), (8.43)
i=—00 j=—00

where x,, y, are the co-ordinates of the region’s center of gravity (centroid), which can be obtained using the
following relationships:
Mo My
X =" Ye =" 8.44
My My ()
In the binary case, m, represents the region area (see equations (8.40) and (8.41)). Scale-invariant features
can also be found in scaled central moments 1,, (scale change x' = ax, y' = ay)
Hpg
”pq = , ¥ ’ 7
(/100)

v Hpg= PN (8.45)

Shape Representation and Description 295

and normalized un-scaled central moments .9pq

'9 o ‘uf’q
pq I (8.46)
(ﬂoo)

Rotation invariance can be achieved if the co-ordinate system is chosen such that 4,,= 0 [Cash and
Hatamian, 1987]. Many aspects of moment properties, normalization, descriptive power, sensitivity to noise,
and computational cost are discussed in [Savini, 1988]. A less general form of invariance was given in [Hu,
1962] and is discussed in [Maitra, 1979; Jain, 1989; Pratt, 1991], in which seven rotation-, translation-, and
scale-invariant moment characteristics are used.

= o+ > (8.47)
w»—(820~1902) +43”, (8.48)
03 = (939 -391)° + 395, - %)’ (8.49)
0y = (F9+ 3" + (95 +)’ (8.50)
05 = (83— 391)(I3 + 91p) (I3 + 912)* = 3(Sy + 93))

+ (39 = 9p3)(Fa1 + F)B(I3 + $12)* = (I + Ip)), (8.51)
P6= (90— Ip) (a9 + 912)* = (F51+93)") +49,1(F50 + F12)(Sy + Sp3) . (8.52)
1= (391 = F3) (a0 + 91 (S5 + 91)° = 3(8y; + I3)")

= (850 = 39)(8 + G3)(3(5 + l912)2 (9 + '903)2)’ (8.53)

where the 3, values can be computed from equation (8.46).

While the seven moment characteristics presented above were shown to be useful, they are invariant only
to translation, rotation, and scaling. Recent algorithms for fast computation of translation-, rotation-, and
scale-invariant moments were given in [Li and Shen, 1991; Jiang and Bunke, 1991]. However, these
approaches do not yield descriptors that are invariant under general affine transforms. A complete set of four
affine moment invariants derived from second- and third-order moments is presented in [Flusser and Suk,
1993]

I= Hao #w /111 (8.54)
#oo
1 —6 +4 2 e =3ty 4
I= Hag Hoz = OH30 oy Hio Moz + 350 Hip T 9 Hoyz =St Hin (8.55)
10 ¢ :
00
2 (2)
ﬂzo(#zl Hoz — Hip) —Hy (ﬂso Hoz — Hay ﬂlz) + oo \ Hao Hp — M)
I= - ; (8.56)
Hoo
I, = (l‘;() /‘12)3 - 6/’%() My Hyo Hos — 6/”%0 Ho Hoy Hoz +9#220 Hop /‘122
120050 piy Hay Moz + Ot Hyy Hop Mo Hoz — 1810 1y Mo Hoy Mo
— 1844y f130 o — 6t M M3 Hin +9 Hog iy 15y
+12#121 Hop Mgty —O 44y ,U(zp My My + #(3)7 /1320)//‘(1)(]1~ (8.57)

Details of the process for the derivation of invariants and examples of invariant moment object descrlptlons
can be found in [Flusser and Suk, 1993].

296 Digital Image Processing and Computer Vision

All moment characteristics are dependent on the linear gray-level transformations of regions; to describe
region shape properties, we work with binary image data (f(i, j) = 1 in region pixels) and dependence on the
linear gray-level transform disappears.

Moment characteristics can be used in shape description even if the region is represented by its boundary.
A closed boundary is characterized by an ordered sequence z(i) that represents the Euclidean distance
between the centroid and all N boundary pixels of the digitized shape. No extra processing is required for
shapes having spiral or concave contours. Translation-, rotation-, and scale-invariant one-dimensional
normalized contour sequence moments m,, i, are defined in [Gupta and Srinath, 1987]. The ™ contour
sequence moment 4, and the r* " central moment 1, can be estimated as

Z 2() (8.58)

1 & ,
Hy = 22 =m)" (8.59)
i=1

The " normalized contour sequence moment m, and normalized central contour sequence moment z, are
defined as

m, L3 (20))
rf2 rf2
“ (ﬁZ (z)=-m,)?)

AT m)
- r2 r/2 *
(1) (#ZZ;(Z(’.)_’”I)Z)

While the set of invariant moments m,, z, can be used directly for shape representation, less noise-sensitive
results can be obtained from the following shape descriptors [Gupta and Srinath, 1987]

1/2
(A2 (-m)?)

(8.60)

'7’_.

(8.61)

F.= = s (8.62)
o EDINED
N
= H _ 7{721 =1 Z(l) ml (8 63)
32 32 ° :
(1) (%Z‘Nl (2()-m,))
1 N
= 2(i)-m
F= 22 ¥ 2in) : (8.64)

2
(1)’ (—,{72?’1(2(1)))
Fi= Ii. (8.65)

Lower probabilities of error classification were obtained using contour sequence moments than area-based
moments (8.47)-(8.53) in a shape recognition test; also, contour sequence moments are less computationally
demanding.

8.3.3 Convex hull

A region R is convex if and only if for any two points X,, X, € R, the whole line segment x,x, defined by its
end points X, X, is inside the region R. The convex hull of a region is the smallest convex region H which

Shape Representation and Description 297

satisfies the condition R ¢ H—see Figure 8.26. The convex hull has some special properties in digital data
which do not exist in the continuous case. For instance, concave parts can appear and disappear in digital
data due to rotation, and therefore the convex hull is not rotation invariant in digital space [Gross and
Latecki, 1995]. The convex hull can be used to describe region shape properties and can be used to build a
tree structure of region concavity.

_ A discrete convex hull can be defined by the following algorithm which may also be used for convex hull
construction. This algorithm has complexity O(n®) and is presented here as an intuitive way of detecting the
convex hull. Algorithm 8.7 describes a more efficient approach.

Algorithm 8.6: Region convex hull construction

1. Find all pixels of a region R with the minimum row co-ordinate; among them, find the pixel P with
the minimum column co-ordinate. Assign P, =P, v=(0, — 1); the vector v represents the direction
of the previous line segment of the convex hull.

2. Search the region boundary in an anti-clockwise direction (Algorithm 6.7) and compute the angle
orientation ¢, for every boundary point P, which lies after the point P, (in the direction of boundary
search—see Figure 8.26). The angle orientation ¢, is the angle of vector P,P,. The point P,
satisfying the condition ¢, = min,, ¢, is an element (vertex) of the region convex hull.

3. Assignv=PP, P =P,

4. Repeat steps 2 and 3 until P, = P,.

Figure 8.26: Convex hull.

The first point P, need not be chosen as described in the given algorithm, but it must be an element of a
convex segment of the inner region boundary.

As has been mentioned, more efficient algorithms exist, especially if the object is defined by an ordered
sequence P = {V. V,,..., v,} of n vertices, v; representing a polygonal boundary of the object. Many
algorithms [Toussaint, 1985] exist for detection of the convex hull with computational complexity O(n log n)
in the worst case; these algorithms and their implementations vary in speed and memory requirements. As
discussed in [Toussaint, 1991], the code of [Bhattacharya and Toussaint, 1983] (in which a Fortran listing
appears) seems to be the fastest to date, using only 5n storage space.

If the polygon P is a simple polygon (self-non-intersecting polygon) which is always the case in a
polygonal representation of object borders, the convex hull may be found in linear time O (n). In the past two
decades. many linear-time convex hull detection algorithms have been published; however more than half of
them were later discovered to be incorrect [Toussaint, 1985, 1991], with counter-examples published. The
algorithm of [McCallum and Avis, 1979] was the first correct linear-time one. The simplest correct convex
hull algorithm was given in [Melkman, 1987] and was based on previous work [Lee, 1983; Bhattacharya and
Gindy, 1984; Graham and Yao, 1984]. Melkman’s convex hull detection algorithm is now discussed further.

298 Digital Image Processing and Computer Vision

Let the polygon for which the convex hull is to be determined be a simple polygon P = {v, v,,...,v,} and
let the vertices be processed in this order. For any three vertices x, ¥, z in an ordered sequence, a directional
function 6 may be evaluated (Figure 8.27)

o(x,y,z)= 1 ifzisto the right of the directed line xy,
= 0 ifzis collinear with the directed line xy,
=-1 ifzisto the left of the directed line xy.

?
(

(a) (b) (c)
Figure 8.27: Directional function 8. (a) 8(x, y,z) = 1. (b) 8(x, y, z) = 0. (c) 5(x, y,z)=—1.

The main data structure H is a list of vertices (deque) of polygonal vertices already processed. The current
contents of H represents the convex hull of the currently processed part of the polygon, and after the detection
is completed, the convex hull is stored in this data structure. Therefore, H always represents a closed polygonal
curve, H = {d,,..., d,} where dj, points to the bottom of the list and d, points to its top. Note that dj, and d, always
refer to the same vertex simultaneously representing the first and the last vertex of the closed polygon.

Here are the main ideas of the algorithm. The first three vertices A, B, C from the sequence P form a
triangle (if not collinear) and this triangle represents a convex hull of the first three vertices—Figure 8.28a.
The next vertex D in the sequence is then tested for being located inside or outside the current convex hull.
If D is located inside, the current convex hull does not change—Figure 8.28b. If D is outside of the current
convex hull, it must become a new convex hull vertex (Figure 8.28c¢) and, based on the current convex hull
shape, either none, one, or several vertices must be removed from the current convex hull—Figure 8.28c¢.d.
This process is repeated for all remaining vertices in the sequence P,

A A p . NA A
/\ al
C B ¢/ ‘Pl\s c/ | B o/ B
: D

(a) (b) (c) (d)

Figure 8.28: Convex hull detection. (a) First three vertices A, B, C form a triangle. (b) If the next vertex D is positioned
inside the current convex hull ABC, current convex hull does not change. (c) If the next vertex D is outside of the current
convex hull, it becomes a new vertex of the new current convex hull ABCDA. (d) In this case, vertex B must be removed
from the current convex hull and the new current convex hull is ADCA.

Following the terminology used in [Melkman, 1987], the variable v refers to the input vertex under
consideration, and the following operations are defined:

push v: ti=t+1, d—>v,
pop d,: ti=t-1,
insert v: b:=b-1, d,—>v,

remove d,: b:=b+1,
input v: next vertex is entered from sequence P, if P is empty, stop,

where — means ‘points to’. The algorithm is then as follows.

Shape Representation and Description

299

Algorithm 8.7: Simple polygon convex hull detection
1. Initialize.

. t:=—1;

. b=0; .
. input v;; input v, ; input vj;
. if(6(vy, Vp v3)>0)
. {pushvy;

. push v,; }
. else

» {push vy

. push vy; }
. push vs;

. insert vs;

2. If the next vertex v is inside the current convex hull H, enter and check a new vertex; otherwise

process steps 3 and 4;

. input v;
2 while (§(V, db’ db+l).>_0AND 6(dt_1, dr, V).>_0)
. input v;

3. Rearrange vertices in H, top of the list.
. while (6(d, |, d,v)<0)
k pop d;;
° pushyv;

4. Rearrange vertices in H, bottom of the list.
® while (5(V, db’ db+l)=0)

. remove dy;
. insertyv;

o go to step 2;

The algorithm as presented may be difficult to follow, but a less formal version would be impossible to
implement; a formal proof is given in [Melkman, 1987]. The following example makes the algorithm more

understandable.
Let P = {A, B, C, D, E} as shown in Figure 8.29a. The data structure H is created in the first step:
t,b... -1 0 1 2
H = C A B C
dy d,

In the second step, vertex D is entered (Figure 8.29b):
oD, dy, d,,,)=06(D,C,A)= 1>0,
6, ,,d,D)=46B,C,D)=-1<0.

Based on the values of the directional function &, in this case, no other vertex is entered during this step.

Step 3 results in the following current convex hull H

t.b... -1 0 1 2
5(B,C,D)=-1—>popd, > H = C A B C,
db dr

300 Digital Image Processing and Computer Vision

t,b... -1 0 1 2
5(A,B,D)=—l—>popd,—) H = C A B C,
d, d,
tyb... -1 0 1 2
6(C,A,D)=1->pushD—> H = cC A D C
d[) dr
In step 4—Figure 8.29¢
t,b... -2 -1 0 1 2

dD,C,A)=1—>insert D> H

[
>
a
>
)
a

Go to step 2; vertex E is entered—Figure 8.29d
oE,D,C)=1>0,
o(A,D,E)y=1>0.

A new vertex should be entered from P, but there is no unprocessed vertex in the sequence P and the convex
hull generating process stops. The resulting convex hull is defined by the sequence H = {d,,....d,} = {D, C,
A, D}, which represents a polygon DCAD, always in the clockwise direction—Figure 8.29e.

A A

(a) (b) (c)

(d) (e)

Figure 8.29: Example of convex hull detection. (a) The processed region—polygon ABCDEA. (b) Vertex D is entered
and processed. (c) Vertex D becomes a new vertex of the current convex hull ADC. (d) Vertex E is entered and processed,
E does not become a new vertex of the current convex hull. (e) The resulting convex hull DCAD.

A region concavity tree is another shape representation option [Sklansky, 1972]. A tree is generated
recursively during the construction of a convex hull. A convex hull of the whole region is constructed first,
and convex hulls of concave residua are found next. The resulting convex hulls of concave residua of the
regions from previous steps are searched until no concave residuum exists. The resulting tree is a shape
representation of the region. Concavity tree construction can be seen in Figure 8.30.

8.3.4 Graph representation based on region skeleton

This method corresponds significantly curving points of a region boundary to graph nodes. The main
disadvantage of boundary-based description methods is that geometrically close points can be far away from

